3,872 research outputs found

    A study of partial coherence for identifying interior noise sources and paths on general aviation aircraft

    Get PDF
    The partial coherence analysis method for noise source/path determination is summarized and the application to a two input, single output system with coherence between the inputs is illustrated. The augmentation of the calculations on a digital computer interfaced with a two channel, real time analyzer is also discussed. The results indicate possible sources of error in the computations and suggest procedures for avoiding these errors

    Efficient self-consistent viscous-inviscid solutions for unsteady transonic flow

    Get PDF
    An improved method is presented for coupling a boundary layer code with an unsteady inviscid transonic computer code in a quasi-steady fashion. At each fixed time step, the boundary layer and inviscid equations are successively solved until the process converges. An explicit coupling of the equations is described which greatly accelerates the convergence process. Computer times for converged viscous-inviscid solutions are about 1.8 times the comparable inviscid values. Comparison of the results obtained with experimental data on three airfoils are presented. These comparisons demonstrate that the explicitly coupled viscous-inviscid solutions can provide efficient predictions of pressure distributions and lift for unsteady two-dimensional transonic flow

    Galaxy 2-Point Covariance Matrix Estimation for Next Generation Surveys

    Get PDF
    We perform a detailed analysis of the covariance matrix of the spherically averaged galaxy power spectrum and present a new, practical method for estimating this within an arbitrary survey without the need for running mock galaxy simulations that cover the full survey volume. The method uses theoretical arguments to modify the covariance matrix measured from a set of small-volume cubic galaxy simulations, which are computationally cheap to produce compared to larger simulations and match the measured small-scale galaxy clustering more accurately than is possible using theoretical modelling. We include prescriptions to analytically account for the window function of the survey, which convolves the measured covariance matrix in a non-trivial way. We also present a new method to include the effects of supersample covariance and modes outside the small simulation volume which requires no additional simulations and still allows us to scale the covariance matrix. As validation, we compare the covariance matrix estimated using our new method to that from a brute force calculation using 500 simulations originally created for analysis of the Sloan Digital Sky Survey Main Galaxy Sample (SDSS-MGS). We find excellent agreement on all scales of interest for large scale structure analysis, including those dominated by the effects of the survey window, and on scales where theoretical models of the clustering normally break-down, but the new method produces a covariance matrix with significantly better signal-to-noise. Although only formally correct in real-space, we also discuss how our method can be extended to incorporate the effects of Redshift Space Distortions.Comment: 18 pages, 9 figures. Accepted for publication in MNRAS. Added new references to introduction and slightly updated text accordingl

    L-PICOLA: A parallel code for fast dark matter simulation

    Full text link
    Robust measurements based on current large-scale structure surveys require precise knowledge of statistical and systematic errors. This can be obtained from large numbers of realistic mock galaxy catalogues that mimic the observed distribution of galaxies within the survey volume. To this end we present a fast, distributed-memory, planar-parallel code, L-PICOLA, which can be used to generate and evolve a set of initial conditions into a dark matter field much faster than a full non-linear N-Body simulation. Additionally, L-PICOLA has the ability to include primordial non-Gaussianity in the simulation and simulate the past lightcone at run-time, with optional replication of the simulation volume. Through comparisons to fully non-linear N-Body simulations we find that our code can reproduce the z=0z=0 power spectrum and reduced bispectrum of dark matter to within 2% and 5% respectively on all scales of interest to measurements of Baryon Acoustic Oscillations and Redshift Space Distortions, but 3 orders of magnitude faster. The accuracy, speed and scalability of this code, alongside the additional features we have implemented, make it extremely useful for both current and next generation large-scale structure surveys. L-PICOLA is publicly available at https://cullanhowlett.github.io/l-picolaComment: 22 Pages, 20 Figures. Accepted for publication in Astronomy and Computin

    Prediction of light aircraft interior noise

    Get PDF
    A computerized interior noise prediction method for light aircraft is described. An existing analytical program, development for commercial jets, forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low-frequency coupled acoustic-structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption

    A study of helicopter interior noise reduction

    Get PDF
    The interior noise levels of existing helicopters are discussed along with an ongoing experimental program directed towards reducing these levels. Results of several noise and vibration measurements on Langley Research Center's Civil Helicopter Research Aircraft are presented, including measurements taken before and after installation of an acoustically-treated cabin. The predominant noise source in this helicopter is the first stage planetary gear-clash in the main gear box, both before and after installation of the acoustically treated cabin. Noise reductions of up to 20 db in some octave bands may be required in order to obtain interior noise levels comparable to commercial jet transports

    Advanced supersonic propulsion study, phase 3

    Get PDF
    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines

    A PI3K-mediated negative feedback regulates Drosophila motor neuron excitability

    Get PDF
    Negative feedback can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. At the Drosophila neuromuscular junction, a mutation in the type II metabotropic glutamate receptor gene (mGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that mGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in an mGluRA-dependent manner. In humans, PI3K and type II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia and other neurological disorders; however, neither the link between type II mGluRs and PI3K, nor the role of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability

    Women and HIV: The Barriers to Protection

    Get PDF
    corecore